Windows Phone Application Development & Debugging – Deactivation versus Tombstoning

While creating an update of an existing application I ran into a problem that sometimes occurred when the application was moved to the background. It turned out that the application behaved consistent with no exceptions raised when it was tombstoned after being moved to the background. However, the application sometimes crashed when it was deactivated and immediately became the executing application again without being tombstoned. In a later post I will explain the specific problem that caused the application to crash, for now I want to focus on ways to easily test deactivation scenarios.

Visual Studio 2010 has great support to test tombstoning scenarios for Windows Phone applications. Simply start debugging an application on a device or on device emulator and click the start button on the device (emulator). You will notice that the application moves to the background but that Visual Studio does not terminate its debugging session. Putting a breakpoint inside Activated / Deactivated event handlers shows us that the application is indeed being tombstoned / resurrected.

Visual Studio and Tombstoning

The debugger shows that the application is still running even though the application is no longer visible on the device. By using the back key on the device, it is possible to return to the application and to continue debugging it. However, if you start the application again on the device (so not using the back key), the debugger terminates. This means that a brand new instance of the application was started. Inside an application, it is possible to distinguish between a new instance being started and resurrection from being tombstoned by acting on the Launching or Activated events respectively. In both cases, the constructor of the page that becomes visible will be executed. More information about the application life cycle of a Windows Phone application can be found in this excellent series of blog entries by Yochay Kiriaty.

There are situations where an application is moved to the background without being tombstoned. In those situations, the application simply remains resident in memory, with its process being kept alive. When the application is activated again, it simply continues running without the need to create a new physical instance of the application. For end users the behavior is identical to tombstoning, after all, the application becomes invisible when another application starts executing. For developers there is a difference though, because no Launching or Activated event is raised and no constructor code (for instance for the currently visible page) is executed. To be able to consistently test application deactivation requires some additional work. One of the ways to ‘force’ deactivation over tombstoning is by starting a PhotoChooserTask. In my own application I simply use the application bar to add a new ApplicationBarIconButton to display a PhotoChooserTask.

To assure that this ApplicationBarIconButton is only visible in Debug mode, a bit of conditional compilation is needed. The following code snippet shows how to create a new ApplicationBarIconButton programmatically, add it to the ApplicationBar and add an event handler to its click event.

Adding an ApplicationBar Item
  1. #if DEBUG
  2. PhotoChooserTask _pt;
  3. #endif
  4.  
  5. public MainPage()
  6. {
  7.     InitializeComponent();
  8.  
  9. #if DEBUG
  10.     _pt = new PhotoChooserTask();
  11.  
  12.     this.ApplicationBar.IsVisible = true;
  13.  
  14.     ApplicationBarIconButton pauseButton = new ApplicationBarIconButton
  15.     {
  16.         Text = "Pause App",
  17.         IconUri = new Uri("/Images/appbar.transport.pause.rest.png", UriKind.Relative),
  18.         IsEnabled = true
  19.     };
  20.  
  21.     pauseButton.Click += new EventHandler(pauseButton_Click);
  22.     this.ApplicationBar.Buttons.Add(pauseButton);
  23. #endif
  24. }

Of course, adding a button to an existing ApplicationBar only works if the application has 3 or less ApplicationBarButtonIcons in use. An alternative could for instance be adding a MouseLeftButtonDown event handler to the application’s title. When clicking the ApplicationBarButtonIcon you created specifically for debug purposes, what you now can do is display the PictureChooserTask. This results in your application being pushed to the background, without being tombstoned.

Forcing us to the background
  1. void pauseButton_Click(object sender, EventArgs e)
  2. {
  3.     _pt.Show();
  4. }

This approach makes it relatively easy to test the different scenarios for your application going to the background and returning to the foreground again. Here are the results in a little test application.

TombstoningOrNot

In the left screen you can see the application immediately after the main page became visible. In the center screen you see the result of clicking the pause button, after which a PhotoChooserTask was activated and closed again. What you can see is that there is no Application_Deactivated / Application_Activated combination. You can also see that no constructor is called after returning from the PhotoChooserTask. In other words, the application is not tombstoned while the PhotoChooserTask is active. Finally, the right screen shows how the application returns from being tombstoned. In this case constructors are called and Application_Activated is raised.

The issue I had in one of my applications had to do with counting on constructors to be called to dynamically add a few controls to my visual tree.

Note: This blog entry is applicable for Windows Phone 7. For the next version of Windows Phone (codenamed Mango), developers can choose between tombstoning and fast application switching by setting the corresponding property in the project settings. Fast application switching could be considered as another state in the application’s life cycle, being very similar to the situation that was described in this post using the PhotoChooserTask.